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What is plasma?

Table 2 Reactions taken into account in the Monte Carlo models
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What is plasma?

Atmospheric pressure plasma
Low pressure plasma

glow discharge DBD plasma

Plasma is a complex mixture of electron, ions,
neutrals, radicals, excited species.
Plasma emits radiation in wide spectral range.

Plasma interacts with solid surfaces and may
change their properties (chemical composition,
morphology, bioresponsive properties etc.)




What is plasma?

Plasma is a complex mixture of electron, ions,
neutrals, radicals, excited species.
Plasma emits radiation in wide spectral range.
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Surface modification Deposition of thin films
Surface cleaning Deposition of nanostructured coatings
Surface sterilization Deposition of nanocompoiste materials
Biomedical applications Biomedical applications

Photovoltaic, Fuel cells
Barrier and protective coatings
Advantages:

Possibility to process virtually any substrate material
Fast, cost-effective, environmentally friendly
High flexibility




l. Plasma treatment of polymers
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DBD plasma may change surface energy, chemical composition as well as
morphology of polymers.




. . Improved metallization of polymers
Applications
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Il. Plasma based sterilization

By means of plasma it is possible to sterilize/decontaminate

Effect on proteins

Highly competitive
with other
sterilization
methods!!!

surfaces.
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lll. Thin films deposition

Plasma may be used for deposition of thin films of
metals, metal-oxides as well as plasma polymers.
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l1l. Thin films deposition - examples

Non-fouling PEO-like thin films

HO\'(/\O/\}“KOH

B

a) evaporated PEO + UV
Witho%

PEO + autoclave | PEO + dry heat

It is possible to fabricate non-fouling PEO-
like coatings that withstand UV light
sterilization.
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A. Choukourov et al. Plasma Process. Polym. 2012, 9, 48
A. Artemenko et. al. Thin Solid Films 2012, 520, 7115



Thin films deposition - examples

Amino-rich thin films
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TiAIV + Nylon
sputtered in Ar

It is possible to fabricate
coatings that promote cells
growth.

TIAIV + Nylon
B sputtered in mixture
& nitrogen-hydrogen

O. Kylian et al. J. Phys. D. Appl. Phys. 2009, 42, 142001
A. Artemenko et. al. Surf. Coat. Tech. 2011, 205, S529




Thin films deposition - examples

Barrier a-C:H coatings 100x better barrier
properties of PET !!
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Thin a-C:H films may significantly
improve barrier properties of
polymeric foils.

O. Polonskyi et al. Thin Solid Films 2013, 540, 65
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Gas inlet

Solar et al. Surface Coat. Technol. 2011, 205, S42
Drabik et al., Plasma Proces Polym, 2011, 7, 544
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V. Nanostructured coatings prepared by
means of gas aggregation sources

Overcoating nanoparticles by plasma polymer

| Step 1 RF— Step 2 RF—

Gas inlet Gas inlet
Bt e

As a source of the overcoat material may be used PECVD or
magnetron sputtering.




V V. Nanostructured coatings prepared by
means of gas aggregation sources

It is possible to control independently surface
roughness and surface chemical composition.

C:H NPs + Ti

We can prepare nanorough surfaces e.g.
for faster osseo-integration or water
repellent character

2odis




Atmospheric pressure processes: deposition

» dielectric barrier discharge (typical):

e 20 W, 23 kHz, 15 kVPP, substrate(glass) -electrode gap 1.5 mm
* monomer: titanium tetraisopropoxide (TTIP), 0.5 mass% in gas (N,, air)
e gas flow: 0.7-2.5 sIm
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SEM images of the films
deposited in N, at various Yasuda
parameter -

a) 11 W/slm (8W, 0.7sIm)

b) 14 W/slm (20W, 1.4sIm)

c) 8 W/slm (20W, 2.5sIlm)

e A.Shelemin, A. Choukourov, J. Kousal, D. Slavinska, H. Biederman: Nitrogen-Doped TiO2 Nanoparticles and Their Composites with
Plasma Polymer as Deposited by Atmospheric Pressure DBD, PLASMA PROCESSES AND POLYMERS 11, 9 (2014) 864-877



Conclusions

Plasma is versatile tool for surface modification
and for deposition of thin functional coatings.

By means of plasma it is possible to tailor surface
properties of solid objects.

Possible applications include:
Biomedical applications
(Bio)sensors
Barrier coatings
Surfaces with controllable wettability
etc.




Thank you for your attention.




